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ABSTRACT /

The results of Part I are extended to include linear spatially periodi-

problems - solutions of the initial value are shown to exist and decay like

B
-t ; . . . .
e - Then the full non-linear Boltzmann equation with a soft potential is

solved for initial data close to equilibrium. The non-linearity is treatecd
as a perturbation of the linear problen, and‘the equation is solved by

iteration.
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SIGNIFICANCE AND EXPLANATION

In Part I the linear Boltzmann equation was solved. In this second

part the full non-linear Boltzmann equation with a soft potential is solved,

provided that the initial configuration of particles is close to equilibrium,

so that the problem is nearly linear.
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f THE BOLTZMANN EQUATION WITH A SOFT POTENTIAL,
g PART II: NONLINEAR, SPATIALLY-PERIODIC
! . Russel caflisch
4 I Introduction
The linear Boltzmann equation with a soft intermolecular petential wa.
) solved globally in time in Part I [1], if the initial density is a spatiali-
' homogeneous perturbation of a globa! Maxwellian. Moreover it was vrovern that
this perturbation decays in £2 oY sup norm like e-)‘ts, with » > -,
& 1>B8>0, if it is initially bounded by a Maxwellian., We will refer to
formulas or results from Part I by preceeding their numbers with an "I" as 11
(I1.7).
- In this paper we find the same result even if the initial perturbaticn
: is gpatially dependent in the cube with periodic boundary conditions. In
: i addition we can solve the spatially periodic nonlinear problem globally in
time if the initial perturbation is small enough, and we find that the solu-
tion decays to the Maxwellian equilibrium.
- ' The linear, spatially-dependent Boltzmann equation is
(1.1) %f+§-:—§f+Lf=o ’
* (1.2) £t=0) =£ eN ,
where £, and f = f(t, x, £) are periodic in x ¢ ™= [0, 2013, ¢ >0,
sk SR, and N=lotx, 8 | | B otx, © adx =0 for viE) = 1,
e: '1‘3 R3
, Ei' or 52}. The requirement that fo € N Jjust weans that we have chosen the
6 right Maxwellian equilibrium to perturd about, so that it has the total mass,

momentum, and energy. Our first result, Theorem 2.1, is that the solution of

—).tB
this problem decays like e .

As in Part I we remove the null space of L = V + K by adding on a

. ma o

N G AN e s,

finite rank operator. N(L) is spanned by the functions wi () defined in

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024. This
material is based upon work supported by the Natiomal Science Foundation under
Grant Nos. MCS78-09525 and MCS76~07039.
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(12.14). We define the modified linear operator

(1.3) L=v+K , !
(1.4) K=K+P

4
(1.5) P= ) b, )V,

. 1 1

i=0

where now the inner product is the 52(5, E) inner product. Since wi are
independent of x and Pfo = 0, the linear problem (1.1), (1.2) is not
changed if we replace L by L. Since the nonlinearity VI of the Boltzmann
equation is also perpendicular to wi, this replacement of L by L does
not affect the nonlinear problem either.

The relevant norms, which are defined in Section 2, are £2 norms of £
and its spatial derivatives, then £2 or sup over £. The derivatives are
introduced in order to be able to use the Sobolev inequality when estimating
the nonlinear terms. For consistency they are also included in the linear theory
of Sections 2 and 3 where they are not really needed. The estimates on K given
in Part I all have analogues which are presented in Section 2.

Just as in Part I the velocities are cut off by defining the characteristic
function 1 E<w ,
(1.6) Xw(€) =
and introducing

=g 2 R
(1.7) B, = £ 3§_+ v(E) + x K

2 3
as an operator on fL”(§ < w, x € T"). The only new twist in the spatially
dependent problem comes in the analysis of the semigroup e_th, given in
Section 3. This employs spectral perturbation theory [4) and an argument given

by Ukai {5]. The rest of the proof of Theorem 2.1 goes exactly as in Part I.

&

L




D halat N

The nonlinear Boltzmann equation is
L
(1.8) — f+E - — f+ LE =Vl(f, £f) .
ax

(1.9) f(t = 0) = fo « N

where f and fo are periodic in x. If fo is sufficiently small, this
problem can be solved for all time and the solutien f(t) decays to 0, as
stated in Theorem 4.1 in Section 4. The estimates on [ in Section > state
that if f is small, VvI(f, £f) 1is even smaller. So this problem is just a
perturbation of the linear problem, which also keeps its solution small. The
solution is found by an iterative procedure described in Section 7, after tie
iteration equation is analyzed in Section 6.

References to previous work and more explanation of the Boltzmann equation
are found in Part I. I am very grateful to Harold Grad, who suggested this
problem, and to Percy Deift, George Papanicolaon and Robert Turner for a number
of helpful discussions. This work was performed at the Courant Institute and

the Mathematics Research Center; I am happy to acknowledge their support.
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II The Linear Eguation

. 2 ..
We will use an { Scbolev norm over space alone, as Wwel. a1

",

. 2 - .
both x and E, which are sup or £ norm over 7 of th
space. If the function is not spatially dependcnt these  (x, 7. -iorr.
exactly those used in Part I and we will use the sane LOLaL1Tl..

Definition. Let € = f(x, §) be poricdic in x.

4
N 2 1,2
(2.1) HEE, )i L] vt e, )7 ax
By s
(2.2) Nel = (f ne@, 12 ant/?
3 = H4(x) =
R
r ﬂ€2
- IRy
{2.3) "f”C!,r = sup (1 + &) e “f(l' )||H (x)
3 a
(2.4) llfﬂ(x = ”f”a,o
(2.5) hel, = nelg o
Denote Hu = {f(x, £): HfHu < o and f periodic in x}. As in Part I

will always refer to exponential decay and r to algebraic decay in

Y ever appears in the subscript of a norm it is in the algebraic decav
The algebraic decay is used in the following proofs, but not in tie stat
of the theorems. The Sobolev inequality in T3 states that

(2.6) Il £glI <cl fNH

II'gll
H4(x) 4(x) HA(X)

The main result for the linear problem is the following:

Theorem 2.1

DRt &t

'

part.

Let 0<a<2, andlet fo e Nn Hu' "Then there is a unigue soluticn of

4!

the linear Boltzmann equation (1.1) and (1.2) in Ha' It decays in time like

-4-
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(2.7) I £¢e < cllfollQ o
a
2.8) NE@N_ < cle . et
2. © — 0'a
(2.9) I[f(t)llOl < clIfO!IOl
2 16 % °
In which B8 = T and X = (1 - 2) a e for any - » . Ti-

constant ¢ depends on €.

The estimates on K are exactly as before. We first note that, =in:
is independent of x,

(2.10) UKEE, Wy (o < KUEC, ol )

)
4 Hq(x)

Using that inequality we easily show

Proposition 2.2

(2.11) "Kf"o,y+3/2 <c el .
(2.12) II1<fII°‘,r+Y+2 <c ufua’
(2.13) kel < c el

These estimates and Theorem 3.1 of the next section are used to prove

Theorem 2.1 just as in Part I. In the proof we solve two types of equations:

]
(2.14) — g + Bw g=g

3t on £ <w ,

1 ’

3 -
in which B = £ * + v + X K, and
w = 9 w

X
9 ]
(2.15) seh+E gph+vh=h
We rewrite these as
-tB t -(t-s)Bw
(2.16)  g(x, t, &) =e "gx, ) +[ e g,(x. s, &) ds
0




g

T

e t_ —-— Y
-ty (L) ) +fe (t s)\(i)h

(2.17) hix, t, ) =e no{x - t&, ¢ (x - (t=-s)f, =,

0

Now take the H4(x) norm and use Theorem 3.1 to estimate

eV {w) \
e itg

(2.18) Nl x) (& £) < o"n (x) &)
4 4
£ U {t-s)v(w)
+ I e HngH (s, §) ds
0 4
¢ -tV ()
(2.19) Wit (x) (&0 &) Ze Fholly (x) 2
4 4
b (t-s)v(E)
+ f e s "hluH (s, £) ds

0 4

These are exactly like the equations treated in Sections 9-12 of Part I.
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III Spectral Theory for the Cutoff Linear Operator
Consider the transport and collision overator

q -

(3.1} R=t » NN

x
2 - RN . . PN

on [ (x, £). Recall that K is the modification of K defined in (1.4).

We shall show that, after restriction to a bounded seot of velocities, this

operator generati:s a strictly contracting semi-aroup. Our main result is

Theorem 3.1

Consider the operator B = £ » -— + v({) +% K on £° {x, £ : £~
w i gi W - =

i) -Bw is maximally dissipative

i1) Let O < w < 1. If w is sufficiently large,

-tB

(3.2) he ¥

- e-tuv(w)

The theorem is proved by looking at the Fourier transform of Bw. The

modification of K only affects the O Fourier variable, so that

(3.3) Bw,k =-ik - g +v+K , k#0 ,

(2.4) B =v + K ,

where k a vector with integer components. Each Bw " is an operator on
2
2 s e
£ (£ 7 w) and satisfies

(3.5) Re (B £, £} >0 .
W -

Wk

The following results are analogous to Theorem 7.1 and Proposition 7.2 in
Part I. An important point is that the statements are independent of k.

Proposition 3.2

Let O <y < 1l. For w sufficiently large, Bw has spectrum whose
r

real part is bigger than wuv(w), i.e.




(3.6) 2 (B ) 2 {3 1 Re * * u.(w)-
w

Moreover the sufficient size of w 1is independent of k.

Proposition 3.3

Let f be an eigenfunction of B , with eigenvalu~ Posuch that
’

Re X < pv(w), Then f 1is rapidly decreasing in £, i.e.

(3.7) sup 1+ " (£ e [En?ar

£

in which the constants ¢, 2re independent of 1, w, f, k.
The following lemma will be used in the proof of Proposition I.Z.

Lemma 3.4

Let f ¢ £2, 8 ¢ R, and k ¢ R3 with k = 1. Then

(3.8) lim swp [ £ 4 =0
e+0 0,k=1 A

in which a = {g : lE - £+ 8] < e}

Proof of Proposition 3.3

Rewrite the eigen-equation as X, Kf = {~(v = X} + ik * & }f. Therefore

using t: i

[ %)

!Kf(é)l 2 (1 - u) v(g) lf(é)l. Then proceed as in Proposition 17.
inequality and the estimates (1I6.1) and (I6.2).

Proof of Proposition 3.2

If k = 0, the proposition is exactly Theorem I7.1. So we consider only

k#0

a) First we show that the values A ¢ c(Bw k) with Re X < 1v(w) are
'_.
necessarily discrete eigenvalues with finite multiplicity. (In fact we could

put here v(w) instead of upv(w)). The pioof is exactly as in {2] using the

methods of [4].

-8-
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}
The Frednolm sct of (-1k - 7=+ .} 1s - : £ ome
' Since )(w K is compact, then this is also the br.
, - e .
. Therefore the set S = {} : Re < . (w): is contair.i in a
’
of the Fredholm s.t of B, Kk This set & olontaln- @.oostis
f
which are in the resolvent set of Bw K because 0f 3 s
R ’
nul (B - ) = def (B - ) = 0. 3ince the nullizy and &7y 0
W,E le
constant in connected components of the Fredhoclm .o, -
- points, nul (Bw,k - ) = def (Bw,k - %) = D in § exoept o at e late
These points are isolated eigenvalues of finite mul<i: licity. Euver
of S 1is in the resolvent set.
b) Now suppose the theorem is not true, so that there are =e:iun - .
w ., 2, k with Re X ¢ o(B Y, < Luviw ) oand RF 0 A oarilngos
n n —n n w ,k n n —n
n'—n
each ‘An is an eigenvalue for Bw " with eigenfunction ¢ , .
n'=n '
(3.9) B £f =3 f and HEfll =1
w K n n n n
n—n
Write )An = ¢n +1i en. Then just as in the proof of Theorem I7.1, ¢
Kfn + g, after restricting to a subsequence, with the result that
lim (-v(g) + ik - +1 8 ) f = g. BAs before we can divide by the factc: .
oo n n n
the right to obtain
(3.10) f z1lim £ = lim = g
) ° - N - + ik - + 1% )
N> n n-w v(£) =n = n
Denote the function inside the last limit in (3.10) as gn.
Next we show that lim kn # », Suppose to the contrary it was + and
restrict to a subsequence with 1lim kn = o,
i .
h
-9-
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cvhoose - as in Lemma 2.4, such that
.2
(.1 sap f €7 35 < 2,
s, k=1 A
. ‘. ; - 1
in which A = {7 : [E + £+ 01 - Vi, Choose n large enough that P
n
pl ~
and I'f - qnll" - ¢. We will obtain a contradiction by integrating €7 over
N [ - ' - ' (o 3
the two sets A = {7 ¢ ik « § + = <& Vand A" =R - A . Denote
n - -n = n’ n n n
K =k sk . Then A =4{f : [k + o+ 'k ' < 1,% }. Since 1/vk - 7,
n —n’''n n n = n n n n
]
(3.12) J£ar - .
A
n
c 2 2
i A < k and
In a 9n <9 /h n
2
Je9ar < f g ag + ¢
An A2
n
(3.13)
<€ IIgH2 + £ .
Adding (3.12} and (3.13) together results in
(3.14) He? < 2¢ + ¢ ngh?
By choosing ¢ small enough we get a contradiction since lfll = 1, which

shows that 1lim kn < @,

Similarly 8§ must stay bounded, and we get k -~k and 6 -~ 3 after
restricting to a suksequence. Since Bn is on the integral lattice,
Bn =Xk for n large enough and so X% # 0. Take the limit n »+ « in the
eigen-equation (3.9) again and find that

(3.15) -ik * Ef + vf + Kf = iOf,

Integrate this against f£; the real part is (vf + Kf, f) = 0. Since

-10~
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L= .+ % 1is a positive semi-definite -elf-adinint cierator, riorn ¢ N,
which means that

(2,1¢) f(E) = a, + 0« & ~
Since (v + K} £ =0, then =-(k = %) f = #f, which imlies that k =
But this is a contradiction, since k # 0. This concludes the ;roof of

Proposition 3.2,

Proof of Theorem 3.1

- 2
i) Since Bw is densely defined on f° (x : * : % - w) and

(3.17) Re(B f, £f) = Re{(v + % K) f, &) >0 ,
w w -

then Ew is maximally dissipative.
ii) This proof is exactly that of theorem 1.1 in [5], except that we

have removed the null space by changing the operator X to K. Denote

A = . =
w X

¥l

+Vv(f), K =X K, and B = A + K, operators on
w w W w W

2 - .
L =L {(x, £) : £ < w}. We outline the proof in the following steps

S

a) K O - Aw)_l is_compact on 52(5, x), for Re X < uviw) .

b) O(Bw) c{X: Re X < pv(w)} for w sufficiently large.

From (a), K is A -compact so that o (B ) =g (A )= {} : Re ) ~ v(w)} [4].
W W e w e w —

In {Re X < vw(w)}, Aw is Fredholm and so is Bw. Moreover if Re X < 0, then

% is in the resolvent set p(Bw). Therefore {Re A < v(w)} ¢ p(Bw), except for

a discrete set of points which are eigenvalues of Bw. But Proposition 3.2

shows that Bw has no eigenvalues to the left of Re X = pu(w) for w large

enough.

c) lim sup HKW(A - Aw)H » 0
[ A ]+ ReA<yv (w)

-11~- s
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; p -1 ; ~1,-1 A
d} Denote 2Z(X) = (A - A ) (I -K (G -na) ) K (" = &4 ", - s,
—_— W w w W W ——
—1 -1 ~
(A - B) = (3 -2a) + Z()). Denote
- N w w —_—
1 -ive
= e—— -lY P 14 3 .
(3.18) Zo(t) = 2v_}; e Z{E + iy) @y
- If B < uv(w}, Zg(t) converges absolutely in the weak topology and o ¢ B
where ¢ is independent of t and ).
-tB ~tA
N e) e Yoe Y4ie Bt ZB(t)
A —tv(w)
Choose 8 = pv(w). Since lle Y < e , the result (ii) in Theorem .1

follows.




IV The Nonlinear Equation
- & Theorem 4.1

T, osucn that

1 X .
' Let 0 < ac< e There is a positive constant

"fO”a < §, then the nonlinear Boltzmann equation (1.8) and (1.

solution in Ha' which satisfies

—”

(4.1) He)l < cllfll e
- 0w
4.2) NEl_ < cle et
®© 0 a
(4.3) el < c gl
a — Oa
1-8 c_ &
o 2 o 0 o
in which 8 = 3% and A= (-2 (3) () foramy e o ms

constant ¢ depends on €.

This B and X are chosen just as in the linear problem, but thoy

correspond to Yy and % rather than o,

-13-
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V Estimates on
The nonlinearity I (f, g) was analyzed by Grad in the Appendix of [3].

We decompose I as (this is slightly different from {3])

(5.1) (£, g) = T (£, @) + (£, @) ,

- 1 172

€5.2) vt =3 figg v 0 wa
-1 v o gy (M2 40

(5.3) v I fg) =S [ N HE D A T

(5.4) & =B, V) o dg

in which fi = f(éi) as given by (2.4) in Part I, etc. The following

estimates are analogous to those proved by Grad.

Proposition 5.1
(5.5) v Tl(f, g)lla,r < C(”f"a,r-y gl + fi £l “q"u,r-y)
. r_(f .
(5.6) v 2( ' g)"a,r <c "f"a,r-k-y "g"u,r-l-y

- Proof

a) By the symmetry in Fl it suffices to consiger v Fll(f. q) =

172

% f £ gl ml dQ. First take the H4(x) norm and use the Sobolev inequality

(2.6). Since the integral does not involve £, we can factor the £ term

out to get
4
1 1/2
(5.7 v Ty (gl () <e ity oo [lg)l w/ BO, V) a0 a
4 4 H_ (x)
4
Replace the first factor using
-r —a£2
(5.8) uﬂ%4m)(g <l +8&) " e Ilfllm,I




Then use the definition (I11.6) of o and the bound (l..oid oo B0 i oars 1y

the Schwartz ineguality to the integral over i]. to obtain
2
. -1/2 % . 1.
[ ua L2 s < o 5 1 - T gt
sy (g =) " @8 < el f3 e EEE AN 1N
N R

O Wow Y
(5.9 < ¢ hign (1 +3)

Cormbrining (5.8) and (5.9) results in

(5.12) v T < c £t lal -,
o, r+yY d

from which (5.5) follows.
b) Again we only estimate

1/2

1
r == " ogt
V21 2J’f1g wooae
(5.11) =%[ ] £ +v) gE +w W2 v+ w
3 wtv
R — —
Qg{v, w)
'—;dﬂdl ,

v
in which w and v are defined by (12.10) and (I2.11). We continue exactly

as Grad did. Resolve £ into components & and §>2 parallel and -

1

perpendicular to v respectively, so that

(5.12) WP ryrw = Pigre ) M Pwre,

and, using also the Sobolev inequality,

Hﬂg+g)ﬂ;+gmﬂ(m
4

T T Y AN AR PNt Das gy S S LS [ R P!

-Hﬂurﬂﬂa

24

-15- !




2
(5.13) <c@+ ) T et @y ™ g 1l gi
- 1 2 a,r a.Y
- N After applying the H4(x) norm to Vv T21 we can use (5.13) in estimatin:
(5.11) to find
-r+l -u52
v T_. < c(l + &) e I £l il gl
21 - o, r a,r
H (x)
4
(5.14)
- -11 v, w)
J T a+entaveny W20+ 00w g2 2 gy s
1 2 SRS | =7 =2 2 R
R3 wiv v

Denote the integral on the right by I. According to Proposition 5.2 from

Part I,
(5.15) Ly Mg 0w, wavecea g +wn O
v - ) Y W, v < 5
wiy
so that
(5.16) 1< [ (1+¢& )'lu ‘e )_1(1 vE 4 v)-(Y+1) lwl/z(v vty av
-3 1 2 2 v RA 1 Ad
- R
It is easy to see that
G170 Wag + 0 WM ag yccas ™Y

Combine this with the estimate

1

1 T rwavccarn™

s.18) [T as+eptavey

which comes (almost exactly) from the Appendix of [3], to obtain

(5.19) I<c+g

Using this in (5.14), we find

2
lr4vsl) -l ol

(5.20) v 1,0 <c(l +68)
H4(X)

7 21 r"wam




~ N ORI v st -

b

k The result (5.6) follows after replacing r with r + Y + 1, diviiin:,
- % taking sup over £.

N

S

|
-17- '] ’
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VT The Inbomoduneous Jteration Eguation
a Consider the cquation
o i LY 3 + = a7 b
(¢.1) 3t £+ 1 ix £+ L f (hl' o
{0.2) f{t =) = fo « N o H

which 1s an inhomogeneous version of the iteration equations that will be
solved in the next section. Pick ' and 28 as in Theorem 4.1, i.e.

corresponding to a/2., For f , h h we require

(6.3) Hegh < by

] Ate Até .
(6.4) sup {lh (&)l _, e fh, (&), e Ih (el '} <b, , i=1,2,
N i a i i L §
in which the sup is taken over time as well as over the three components.

Proposition 6.1

The solution f of (6.1) and (6.2) satisfies

Ate

8
MU e, e

max (M€ , e e}

(€.5)
+
< c(b0 b1 b2)
We will employ two useful inequili“ies. The first is a special case of

an interpolation theorem for the o, r - norms.

Lemma 6.2

1/2 1/2
(6.6) Wel o < 208l 7% Hell g

/2

Proof For any EO > 0,

1




T e T AT TAYY

e

.
.

L7 _r 2 .
270 ] T
I’fli‘lﬁic Yosu ::(g):*‘e sup v ‘f{.-;)‘
- f<f £>¢
i)
Qa 2 A 2
2% 2%
€.7) < e el + e i £
< w .
< 2 vl EE O AER
< R ,
L
> G
Ly cnoosing e Y = VTET Z0EN
. =
Lemma o, 3
For 0 < 8 <1,
t
. R g -1 =Xt
(6.8) [ e i-vit -9 -2y as<ca+rnte ,
0

where ¢ depends on &,

Proof
Just use the estimate (t - s)b - (t8 - SB) > ¢ {(t/2)2 - (s - t/2)2) in
the integral.

Proof of Proposition 6.1

a) First we infer from Lemma 6 .2 and (6.4) that

L
(6.9) "hi(t)”a/z Lecb e
According to Proposition 6.1 and (6.4),
-XtB
(6.10) v rl(hl, hZ)(t)"u <c bl b2 e R
(€.11) IRV rz(hl, h2)(t)"a,Y+l <c bl b2 .
(6.12) Iy This Aol . < e b b et
; vV ey a2 26 P 9y e
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a .
Note that the 3" norm decays, while the o« - norm does nct. This . . L. 1
the reason for using the a/2 and will be needed in the next cstira . 1

b) Using the estimates (2.7) and (2.8) for the linear prrobler atd <. 1

(6.12) and Lemma 6.3, we find that (recall that =+ Corresponds te . ..
-Ata . -2 (t s)ff
; ! - [ 5 .
max (I £(e), BE(EM Y<ce Ilfollg/z*fc jme L A
8 t 8 £
R (6.13) <ce)‘t b +cfe)‘(t-s) e)s ds b, b
h o) 172
0
-t
+ b . !
<ce (b0 b1 2)

3
n

c) To ectimate llf(t:)”OL we go back and redo the linear cstimatc.

in (2.19) we estimate

-tv (E) ‘
hece, EXN <e el +
Hy () H, (x) |
4

(6.14) l

J't - (t-5)V (E) ‘
e (I k£l (s, £) + v T (s, £)) ds \
o H4(x) H4(x) ‘
1

Using the argument in Section 12 of Part I, we find that

2
sup (2 o~ (E-sIviE) ||l(fliH x) (s, &)}
£ 4 )
(6.15) a£2
ccl+t-92 e Cugl ¢ eV s )

for any Eo. Choose EO large enough and use (6.13) to obtain

(s, £)} ds

t 2
[ suw {8 o (EmsIVE) kel
(A §"
(6.16)
1
. <= sup HIf(s)l + c(b, + b, b)) (
2 o<s<t o o] 12 ‘
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The last term in (6.14) is split intc two rart- g | - -
(cf. (5.1)). The reason for going back to the linear —zua®is: wu- - ‘

estimate the term containing 7 _:

2
sup eag e_(t—s)V(E)Hv T?H

£ H, )

(s, %)

(6.17) < supi(l + gy 1md/2 (ems) )

- <+t -8 iR By By

LS}

t

where we used Lemma I12.1 and (6.11) in the last s

integrable over time.

2 -
13 e-(t-s)v(g) Mo =1

t
¢ (6.18) [ sup {e v ool s
o z

[~
e
kd

The term containing T is easily estirated

1
' t 2
r - - c ‘
[ sup {** e (E=s)v (B) o) (s, 1) ds
o § H, (x)
- -
(6.19)

t
<[ v T ds< o, b,
Q

1

because of (6.10).

t
payd
[
+
P
N
b
1

The three terms estimated in (6.1¢Y, (¢.13), and (é.17) yplus

term in (6.14) are just what appear on the rizht side of (6.14) after
N

; . af . . . . .
. multiplying by e and taking sup over L. The result is that

(PN e

vy
0
—

(6.20) NEI < cb. + b b +
a - Qo

i from which it follows that
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l.ais 5 the proof ¢f the Froposition.
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M Tincar tora gquartion (doed oand (1 Yora oscived Ty
EEANS 1T
- f:‘
(7.0 TRt = M
.
dradorro o edang

T.0 — F + . 13 + 1, f = £ 4 < - ) H
Ce t "nel = n+l Y L n)' +1

1rst owe show the bourdedness and decav of  f o1 Duncte £ =1 i

R
sul; ose that
- . N . tv L..
(7.3) max <HEn o, . S S AP R (O S N S S S
n n no_-

We need in addition that b > b, in order to get the induction startd.d.

O

according te Proyosition (6.1), the estimate (7.3) will also b tru. for

A

LN S - C(hn + b7). This can be fulfilled as lonc as b is small
. ~noudh, and we can even make b as small as desired.
Next we estimate the difference h = f - f . For h we have
n+l n+l n n+l
tix equation
T, = Soe — + =vw P(h, £ + £ , (t = 1 = Q
¢ ) It n+l = 3IX hn+l L hn+l (hn n—l) ‘
)tB )té
Denote  j hill = sup Anl , e Ik, e"" Fh(e)l b, Then Hinfl < ap
. . t 2
from (7.3), and using iroposition 6.1 again, |”hn+l(t);H < 2cb i
After choosing b < 5%, we find that | l”hn+l(t)|” < ®, and it follows that
. n=2
(7.5) £ -+ f
n
in the norm IH . H|. Moreover f solves equations (1.8) and (1.4). This
. - . concludes the proof of Theorem 4.1,
3 i
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